

Journal of Organometallic Chemistry 645 (2002) 228-234

www.elsevier.com/locate/jorganchem

Synthesis of 2-pyranylidene or (2-furyl)carbene-chromium complexes from conjugated enyne carbonyl compounds with $Cr(CO)_5(THF)$

Koji Miki, Tomomi Yokoi, Fumiaki Nishino, Kouichi Ohe*, Sakae Uemura*

Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan Received 21 August 2001; received in revised form 18 September 2001; accepted 23 September 2001

Abstract

The reaction of β -ethynyl α , β -unsaturated esters or amides with Cr(CO)₅(L) (L = Et₂O, THF), derived from chromium hexacarbonyl, gives 2-pyranylidene–chromium complexes in good yields. The conjugated ene-carbonyl-vinylidene complex is a key intermediate to these Fischer-type oxacarbene complexes. In contrast, β -ethynyl α , β -unsaturated ketones react with Cr(CO)₅(THF) to give (2-furyl)carbene complexes via nucleophilic attack of the carbonyl oxygen atom to the intermediate π -alkyne–chromium complexes. Some chemical transformation, such as [4 + 2] type cyclization of 2-pyranylidene complexes with alkynes and aldehyde formation from (2-furyl)carbene complexes, has also been described. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Chromium; Pyranylidene; Furylcarbene; Vinylidene

1. Introduction

Transition metal carbene complexes, especially Fischer-type oxacarbene complexes, have been widely studied and applied to synthetic organic chemistry as versatile organometallic reagents [1,2]. Typical oxacarbene complexes like (CO)₅M=C(OR)R' are readily prepared by the reaction of metal hexacarbonyl with a range of organolithium and organomagnesium reagents. Nucleophilic addition of an alcohol to the α and β -carbons of a vinylidene–metal complex (M = $C_{\alpha} = C_{\beta}$, M = Cr, Mo, W) also leads to the formation

* Corresponding authors. Tel.: + 81-75-753-5687; fax: + 81-75-753-3573.

of oxacarbene complexes in catalytic and stoichiometric reactions [3-5]. We have recently reported that 2pyranylidene-molybdenum and -tungsten complexes, as cyclic Fischer-type oxacarbene complexes, were prepared from $M(CO)_{5}(L)$ (M = Mo, W; L = THF, NEt₃) and β -ethynyl α,β -unsaturated esters or amides via nucleophilic attack of the carbonyl oxygen to the α -carbon of a vinylidene-metal intermediate (Scheme 1) [6,7]. However, the preparation of 2-pyranylidenechromium complexes from $Cr(CO)_5(L)$ (L = Et₂O, THF), which was prepared by photo-irradiation, was unsuccessful. The complex Cr(CO)₅(NMe₃) [8] prepared from $Cr(CO)_6$ and trimethylamine-N-oxide in situ was only slightly effective for the preparation of 2-pyranylidene-chromium complex. After we investigated the optimal conditions to obtain 2-pyranylidene-chromium complexes, we found that the reaction of β -ethynyl α,β -unsaturated esters or amides with Cr(CO)₅(solv), which was prepared from $Cr(CO)_6$ by irradiation in a suitable solvent, in the presence of Et₃N as an additive gave effectively the corresponding pyranylidenechromium complexes. In sharp contrast with this result, the reaction of β -ethynyl α , β -unsaturated ketones with Cr(CO)₅(THF) afforded new (2-furyl)carbene-

E-mail address: uemura@scl.kyoto-u.ac.jp (S. Uemura).

chromium complexes. The 5-*exo*-dig nucleophilic cyclization in a π -alkyne complex of the ketone with $Cr(CO)_5$ might be responsible for the formation of nonstabilized carbene complexes. 2-Pyranylidene– chromium complexes undergo [4 + 2] type cycloaddition with dimethyl acetylenedicarboxylate followed by demetallation to give tetralin derivatives, while (2furyl)carbene–chromium complexes react with molecular oxygen to give the corresponding furfurals.

2. Results and discussion

We have reported that 2-pyranylidene-tungsten or -molybdenum complexes were prepared from β -ethynyl α,β -unsaturated esters or amides with W(CO)₅(THF) [9] or Mo(CO)₅(NEt₃) [8]. However, the corresponding pyranylidene-chromium complexes could not be prepared under similar conditions using Cr(CO)₅(Et₂O) or Cr(CO)₅(THF). When we examined the reaction with these chromium complexes in more detail, we found that the reaction of β -ethynyl α,β -unsaturated ester **1a** with Cr(CO)₆ and Me₃N+O⁻ gave 2-pyranylidenechromium complex **2a** in 9% yield (Eq. (1)). We consid-

ered that trimethylamine, which is generated from the reaction between $Cr(CO)_6$ and $Me_3N^+O^-$ might play some role in the formation of pyranylidene complex. Then we tried the reaction using an amine as an additive. The reaction of 1a with $Cr(CO)_5(Et_2O)$ in the absence of triethylamine gave none of 2a (Table 1). However, the reaction proceeded in the presence of triethylamine to give complex 2a in 27% isolated yield together with the recovered 1a (30–50%). The use of THF instead of Et₂O as a solvent gave a better yield of 2a. The reactions of other substrates with Cr(CO)₅(THF) in the presence of triethylamine were next examined, typical results of which being shown in Table 2.

Reactions of **1a** with a lesser amount of $Cr(CO)_5(THF)$ gave lower yields of **2a** in 15% (1.2 equivalents of Cr) and 33% (2.0 equivalents of Cr), respectively (entries 1 and 2). The reaction of an amide **1b** with $Cr(CO)_5(THF)$ at room temperature for 0.5 h also gave the corresponding 2-pyranylidene–chromium

Table 1 Preparation of **2a**

Solvent	Additive	Isolated yield (%)	Isolated yield (%)	
Et_2O (30 ml) Et_2O (30 ml) THF (20 ml)	Et ₃ N (0.1 ml) Et ₃ N (0.1 ml)	27 62		

^a The solution of $Cr(CO)_5(L)$ was prepared by irradiating $Cr(CO)_6$ (in Et₂O or THF) for 4 h with a high-pressure Hg lamp.

Table 2

Preparation of pyranylidene–chromium complexes from conjugated enyne carbonyls and $Cr(CO)_5(THF)^{a,b}$

^a Reactions were carried out with 1 (0.2 mmol) at room temperature for 2 h under Ar. ^b The solution of $Cr(CO)_5(L)$ was prepared by irradiating a solution of $Cr(CO)_6$ (0.6 mmol) and triethylamine (0.1 ml) in THF (20 ml) for 4 h with a high-pressure Hg lamp. ^c Isolated yield. ^d 1a (0.5 mmol). ^e 1a (0.3 mmol). ^f Reaction time was 0.5 h.

complex 2b in 68% yield (entry 4). The ester 1c and the amide 1d gave similar complexes 2c and 2d in 69 and 50% yields, respectively (entries 5 and 6). At present, we assume that triethylamine facilitates the formation of a vinylidene-chromium intermediate from a π -alkyne-chromium complex (Scheme 2) [7b].

The structure of pyranylidene-chromium complexes represents α -metallopyrone. Therefore, we envisaged cycloaddition reaction of these 2-pyranylidenechromium complexes with dienophiles. The reaction of 2a with an excess amount of dimethyl acetylenedicarboxylate (DMAD, 15 equivalents) gave the tetralin derivative 3a in 26% isolated yield (Table 3). The use of solvent, i.e., toluene, did not positively affect the reaction. The reaction in DMSO resulted in demetallation leading to the formation of compound **1a** in 59% yield. The complex 2b also reacted with DMAD to give the corresponding tetralin derivative 3b in 25% yield. However, the reaction of 2a with an electron-rich dienophile, i.e., ethyl ethynyl ether, gave only a trace amount of tetralin derivative as one isomer (Eq. (2)). The transformation was explained by assuming [4 + 2] cycloaddition reaction between 2-pyranylidene-chromium complex and the acetylene followed by a pericyclic demetallation of chromium hexacarbonyl (Scheme 3).

Next, we examined the reactions of β -ethynyl α , β -unsaturated ketone instead of β -ethynyl α , β -unsaturated ester or amide with chromium and tungsten carbonyls. When 2-ethynyl-1-cyclohexenyl phenyl ketone (**4a**) was treated with three equivalents of Cr(CO)₅(THF) in the presence of triethylamine, the corresponding 2-pyranylidene-chromium complex **2e** was obtained only in 8% yield together with many unidentified products (Eq. (3)). On the other hand, in the absence of triethylamine the reaction of **4a** with three equivalents of Cr(CO)₅(THF) did not afford **2e**, and instead (2furyl)carbene-chromium **5a** was isolated in 52% yield as a blue solid (Eq. (4)) [10]. The complex **5a** is marginally stable during purification with silica gel column

Table 3

Reaction of pyranylidene-chromium complex with dimethyl acetylene dicarboxylate

$\begin{array}{c} & \begin{array}{c} & Cr(CO)_5 & 15 \mbox{ equiv} \\ & MeO_2C & CO_2Me \\ \hline & & Solvent \\ 2a \ (R = OMe) \\ 2b \ (R = NEt_2) \end{array} \begin{array}{c} & OO_2Me \\ & & OO_2ME \\ &$						
Entry	Substrate	Solvent	Product	Yield (%) ^a		
1 2 3 4 5	2a 2b 2a 2a 2a	– Toluene Dioxane DMSO	3a 3b 3a 3a 3a	26 25 9 0 0 ^b		

^a Isolated yield.

^b An enyne carbonyl compound 1a was obtained in 59% yield.

chromatography. 2-Thienyl ketone **4b** also gave the corresponding (2-furyl)carbene-chromium complex **5b** in 59% yield. When **4a** was treated with three equivalents of $W(CO)_5(THF)$, (2-furyl)carbene-tungsten complex **5c** was isolated in 56% yield [11] (Eq. (4)).

However, in the reaction of an alkyl vinyl ketone, such as ethyl 2-ethynyl-1-cyclohexenyl ketone ($\mathbf{R} = \text{Et}$ in 4), we could not succeed in the isolation of the corresponding (2-furyl)carbene complex. These complexes $5\mathbf{a}-5\mathbf{c}$ were stored for several days under N₂ atmosphere, but they gradually decomposed in CDCl₃ or under oxygen atmosphere. When the isolated carbene complex $5\mathbf{a}$ was stirred in THF under oxygen atmosphere, furfural derivative $6\mathbf{a}$ was obtained in 76% yield. The displacement of metal carbonyl moiety with the oxygen atom in carbene complex by molecular oxygen is a well-known process [12]. Most plausible pathway from 4 to 5 is shown in Scheme 4.

In the pre-equilibrium between a π -alkyne complex 7 and a vinylidene complex 8, 5-*exo*-dig cyclization takes place as a favorable process to give the furylcarbene

;O₂Me

Scheme 4.

complex. The presence of triethylamine, which may promote the isomerization of a π -alkyne complex to a vinylidene complex, in fact, precluded the formation of the (2-furyl)carbene complex. The mode of the complex formation is also attributed to the difference in the reactivity of carbonyl functionality of β -ethynyl α , β -unsaturated carbonyl compounds.

3. Conclusions

We have demonstrated that 2-pyranylidene– chromium complexes were prepared from β -ethynyl α,β -unsaturated esters and amides in the presence of triethylamine. In sharp contrast, the reaction of β -ethynyl α,β -unsaturated ketones with M(CO)₅(THF) (M = Cr, W) gave (2-furyl)carbene complexes selectively via nucleophilic attack of a carbonyl oxygen to a π -alkyne complex. Some chemical transformation of newly prepared 2-pyranylidene–chromium complexes and (2furyl)carbene–chromium and tungsten complexes has been described: [4 + 2] type cyclization with alkynes in the former cases and aldehyde formation in the latter cases, respectively.

4. Experimental

4.1. General

Tetrahydrofuran (THF) and Et₂O were distilled from sodium benzophenone ketyl under Ar. Analytical thinlayer chromatographies (TLC) were performed with silica gel 60 Merck F-254 plates. Column chromatographies were performed with Merck silica gel 60. The NMR spectra were measured for solutions in CDCl₃ or THF- d_8 with Me₄Si as an internal standard (¹H and ¹³C) and the following abbreviations are used: s, singlet; d, doublet; t, triplet; q, quartet; quint, quintet; m, multiplet. IR spectra were recorded with a FT-IR spectrometer. Melting points (m.p.) are uncorrected. Elemental analyses were performed at Microanalytical Center of Kyoto University. All new compounds were prepared and fully characterized.

4.2. Synthesis of 2-pyranylidene-chromium complex 2 from 1 or 4a

4.2.1. 2-Pyranylidene-chromium complex 2a from 1a

A solution of $Cr(CO)_6$ (0.13 g, 0.60 mmol) in THF (20 ml) and Et_3N (0.1 ml) under Ar was irradiated by a Hg lamp (350 nm) at room temperature (r.t.) for 4 h. To this orange solution under Ar was added a solution of **1a** (33 mg, 0.20 mmol) in THF (1 ml) by a syringe. The mixture was stirred at r.t. for 0.5–2 h. The solvent was removed under reduced pressure, and the residue

was subjected to column chromatography on SiO₂ with hexane–EtOAc (v/v = 10:1) as an eluent to afford **2a** (44 mg, 62% yield) as an orange solid, m.p. 91.5– 94.3 °C. IR (KBr, cm⁻¹): 1897, 1935, 1976, 2053. ¹H-NMR (CDCl₃, 300 MHz, 25 °C): $\delta = 1.72-1.84$ (m, 4H), 2.38–2.49 (m, 2H), 2.55–2.64 (m, 2H), 4.32 (s, 3H), 7.33 (s, 1H). ¹³C-NMR (CDCl₃, 75 MHz, 25 °C): $\delta = 20.4$, 21.2, 21.4, 29.0, 56.9, 108.2, 134.7, 154.9, 171.9, 218.6 (Cr–CO), 223.4 (Cr–CO), 251.0 (Cr = *C*). HRMS (FAB); *m/z*: 355.9995 ([M⁺], calc. for C₁₅H₁₂CrO₇: 355.9988).

4.2.2. 2-Pyranylidene-chromium complex 2b from 1b

An orange solid (68% yield), m.p. 118.4–121.5 °C. IR (KBr, cm⁻¹): 1888, 1909, 1965, 2045. ¹H-NMR (CDCl₃, 300 MHz, 25 °C): $\delta = 1.36$ (t, J = 6.9 Hz, 6H), 1.69–1.79 (m, 4H), 2.44–2.50 (m, 2H), 2.53–2.60 (m, 2H), 3.63 (q, J = 6.9 Hz, 4H), 6.96 (s, 1H). ¹³C-NMR (CDCl₃, 75 MHz, 25 °C): $\delta = 13.7$, 21.1, 22.6, 25.4, 29.5, 44.7, 108.6, 132.0, 151.2, 170.1, 219.3 (Cr–CO), 223.9 (Cr–CO), 240.7 (Cr=C). Anal. Calc. for C₁₈H₁₉CrNO₆: C, 54.41; H, 4.82; N, 3.53. Found: C, 54.27; H, 5.03; N, 3.40%.

4.2.3. 2-Pyranylidene-chromium complex 2c from 1c

An orange solid (69% yield), m.p. 71.0–73.5 °C. IR (KBr, cm⁻¹): 1898, 1917, 1976, 2053. ¹H-NMR (CDCl₃, 300 MHz, 25 °C): $\delta = 4.32$ (s, 3H), 6.15 (d, J = 8.1 Hz, 1H), 7.15 (dd, J = 8.1, 8.1 Hz, 1H), 7.68 (d, J = 8.1 Hz, 1H). ¹³C-NMR (CDCl₃, 75 MHz, 25 °C): $\delta = 57.0$, 96.9, 134.1, 139.6, 175.0, 217.9 (Cr–CO), 223.4 (Cr–CO), 269.6 (Cr=C). HRMS (FAB); m/z: 301.9518 ([M⁺], calc. for C₁₁H₆CrO₇: 301.9519).

4.2.4. 2-Pyranylidene-chromium complex 2d from 1d

An orange solid (50% yield), m.p. 128.3–129.5 °C. IR (KBr, cm⁻¹): 1906, 1966, 2052. ¹H-NMR (CDCl₃, 300 MHz, 25 °C): $\delta = 3.75-3.87$ (m, 8H), 6.00 (m, 1H), 6.97 (m, 1H), 7.26 (m, 1H). ¹³C-NMR (CDCl₃, 75 MHz, 25 °C): $\delta = 44.7$, 65.9, 95.4, 129.4, 137.6, 169.2, 218.7 (Cr–CO), 223.8 (Cr–CO), 258.1 (Cr=C). HRMS (FAB); m/z: 356.9934 ([M⁺], calc. for C₁₄H₁₁CrNO₇: 356.9941).

4.2.5. 2-Pyranylidene-chromium complex 2e from 4a

The ketone **4a** (0.13 g, 0.60 mmol) and Et₃N (1.0 ml) were used. A red solid (8% yield), m.p. 132.0–134.6 °C. IR (KBr, cm⁻¹): 1918, 1974, 2051. ¹H-NMR (THF- d_8 , 300 MHz, 25 °C): $\delta = 1.78-1.91$ (m, 4H), 2.76–2.84 (m, 4H), 7.56–7.62 (m, 3H), 7.79–7.86 (m, 2H), 7.95 (s, 1H); ¹³C-NMR (THF- d_8 , 75 MHz, 25 °C): $\delta = 22.0$, 23.0, 26.2, 29.6, 124.8, 129.6, 129.7, 132.0, 133.1, 141.0, 150.6, 175.5, 219.2 (Cr–CO), 224.3 (Cr–CO), 268.8 (Cr=*C*). HRMS (FAB); m/z: 402.0185 ([M⁺], calc. for C₂₀H₁₄CrO₆; 402.0196).

4.3. Typical procedure for [4+2] type cycloaddition of **2**

4.3.1. Dimethyl 5,6,7,8-tetrahydro-1-methoxy-2,3naphthalenedicarboxylate (**3a**)

A mixture of complex **2a** (0.034 g, 0.095 mmol) and dimethyl acetylenedicarboxylate (0.2 ml, 1.6 mmol) in a sealed tube was stirred at 90 °C for 12 h under N₂. The mixture was subjected to column chromatography on SiO₂ with hexane–EtOAc (v/v = 10:1) as an eluent to afford **3a** (7 mg, 0.025 mmol, 26% yield) as a colorless liquid. ¹H-NMR (CDCl₃, 300 MHz, 25 °C): $\delta = 1.77-$ 1.84 (m, 4H), 2.74–2.82 (m, 4H), 3.79 (s, 3H), 3.86 (s, 3H), 3.94 (s, 3H), 7.52 (s, 1H). ¹³C-NMR (CDCl₃, 75 MHz, 25 °C): $\delta = 22.2$, 22.4, 23.7, 29.3, 52.3, 52.6, 61.7, 125.3, 126.6, 127.2, 136.9, 140.4, 155.0, 165.8 (CO), 168.4 (CO).

4.3.2. Dimethyl 1-diethylamino-5,6,7,8-tetrahydro-2,3naphthalenedicarboxylate (**3b**)

A yellow liquid (25% yield). ¹H-NMR (CDCl₃, 300 MHz, 25 °C): $\delta = 1.00$ (t, J = 7.2 Hz, 6H), 1.72–1.82 (m, 4H), 2.65–2.75 (m, 2H), 2.75–2.86 (m, 2H), 2.90–3.12 (m, 4H), 3.85 (s, 3H), 3.89 (s, 3H), 7.57 (s, 1H). ¹³C-NMR (CDCl₃, 75 MHz, 25 °C): $\delta = 14.4$, 22.4, 22.6, 26.6, 29.6, 47.4, 52.1, 52.2, 124.7, 128.1, 134.9, 139.4, 144.2, 146.8, 166.2 (CO), 169.8 (CO).

4.4. Synthesis of furylcarbene complexes 5

4.4.1. Chromium complex 5a

A solution of Cr(CO)₆ (0.13 g, 0.60 mmol) in THF (20 ml) under Ar was irradiated by a Hg lamp (350 nm) at r.t. for 4 h. To the yellow solution under Ar was added a solution of 4a (42 mg, 0.20 mmol) in THF (1 ml) by a syringe. The mixture was stirred at r.t. for 0.5 h. The solvent was removed under reduced pressure, and the residue was subjected to column chromatography on SiO₂ with hexane-EtOAc (v/v = 10:1) as an eluent to afford 5a (42 mg, 0.10 mmol, 52% yield) as a blue solid. IR (KBr, cm⁻¹): 651, 826, 1934, 1994, 2045. ¹H-NMR (THF- d_8 , 300 MHz, 25 °C): $\delta = 1.84-2.00$ (m, 4H), 2.75-2.83 (m, 2H), 2.95-3.04 (m, 2H), 7.60-7.69 (m, 3H), 8.16-8.25 (m, 2H), 13.5 (s, 1H). ¹³C-NMR (THF- d_8 , 75 MHz, 25 °C): $\delta = 23.0, 24.0, 24.1,$ 24.4, 127.7, 128.8, 129.9, 130.8, 132.9, 138.4, 168.2, 171.7, 219.6 (Cr-CO), 233.9 (Cr-CO), 284.4 (Cr=C). HRMS (FAB); m/z: 402.0195 ([M⁺], calc. for C₂₀H₁₄CrO₆: 402.0219).

4.4.2. Chromium complex 5b

A blue solid (59% yield). IR (KBr, cm⁻¹): 1933, 1970, 2041. ¹H-NMR (THF- d_8 , 300 MHz, 25 °C): δ = 1.73–1.90 (m, 4H), 2.66 (t, J = 3.9 Hz, 2H), 2.77 (t, J = 3.9 Hz, 2H), 7.27–7.31 (m, 1H), 7.88–7.94 (m, 2H), 13.0 (s, 1H). ¹³C-NMR (THF- d_8 , 75 MHz, 25 °C): $\delta = 21.5, 21.6, 22.2, 22.7, 125.3, 129.2, 130.3, 131.5, 132.8, 137.2, 163.3, 169.9, 218.2 (Cr-CO), 232.3 (Cr-CO), 276.4 (Cr=C). HRMS (FAB);$ *m*/*z*: 407.9756 ([M⁺], calc. for C₁₉H₁₂CrO₆S: 407.9760).

4.4.3. Tungsten complex 5c

A solution of W(CO)₆ (0.21 g, 0.60 mmol) in THF (20 ml) under Ar was irradiated by a Hg lamp (350 nm) at r.t. for 4 h. To the yellow solution under Ar was added a solution of 4a (42 mg, 0.2 mmol) in THF (1 ml) by a syringe. The mixture was stirred at r.t. for 0.5 h. The solvent was removed under reduced pressure, and the residue was subjected to column chromatography on SiO₂ with hexane-EtOAc (v/v = 10:1) as an eluent to afford 5c (60 mg, 0.11 mmol, 56% yield) as a blue solid. IR (KBr, cm⁻¹): 580, 677, 825, 1920, 1934, 2052. ¹H-NMR (THF- d_8 , 300 MHz, 25 °C): $\delta = 1.94-$ 2.10 (m, 4H), 2.54-2.60 (m, 2H), 3.07-3.13 (m, 2H), 7.64-7.78 (m, 3H), 8.26-8.32 (m, 2H), 13.3 (s, 1H). ¹³C-NMR (THF- d_8 , 75 MHz, 25 °C): $\delta = 21.3$, 22.5, 22.5, 23.5, 127.4, 127.9, 129.5, 129.8, 131.5, 141.7, 166.5, 171.3, 198.1 (W-CO), 210.2 (W-CO), 247.8 (W=C). HRMS (FAB); m/z: 534.0300 ([M⁺], calc. for $C_{20}H_{14}WO_6$: 534.0286).

4.5. Synthesis of furfural derivatives 6

4.5.1. Furfural 6a

A solution of **5a** (22 mg, 0.054 mmol) in THF (5 ml) was stirred at r.t. under O₂ atmosphere for 12 h. The solvent was removed under reduced pressure and the residue was subjected to column chromatography on SiO₂ with hexane–EtOAc (v/v = 8:1) as an eluent to afford **6a** (9.2 mg, 0.041 mmol, 76% yield) as a white solid, m.p. 91.3–94.8 °C. IR (KBr, cm⁻¹): 696, 773, 828, 1650, 1669. ¹H-NMR (THF-*d*₈, 300 MHz, 25 °C): $\delta = 1.73-1.86$ (m, 4H), 2.81–2.87 (m, 2H), 2.87–2.93 (m, 2H), 7.31–7.38 (m, 1H), 7.41–7.49 (m, 2H), 7.76–7.81 (m, 2H), 9.73 (s, 1H). ¹³C-NMR (THF-*d*₈, 75 MHz, 25 °C): $\delta = 22.8$, 23.4, 23.9, 24.4, 122.6, 124.7, 127.1, 129.9, 130.2, 132.1, 147.8, 152.9, 178.2 (CHO). HRMS (FAB); *m/z*: 227.1067 ([M + H⁺], calc. for C₁₅H₁₄O₂: 227.1072).

4.5.2. Furfural 6b

A white solid (76% yield), m.p. 100.5–101.6 °C. IR (KBr, cm⁻¹): 698, 819, 853, 1445, 1635, 1663. ¹H-NMR (THF- d_8 , 300 MHz, 25 °C): $\delta = 1.75-1.90$ (m, 4H), 2.68–2.76 (m, 2H), 2.87–2.94 (m, 2H), 7.14 (dd, J =3.6, 4.8 Hz, 1H), 7.42 (d, J = 4.8 Hz, 1H), 7.47 (d, J = 3.6 Hz, 1H), 9.69 (s, 1H). ¹³C-NMR (THF- d_8 , 75 MHz, 25 °C): $\delta = 22.7$, 23.1, 23.5, 24.1, 121.6, 126.6, 128.2, 129.3, 134.0, 136.7, 147.4, 149.6, 177.8 (CHO). Anal. Calc. for C₁₃H₁₂O₂S: C, 67.21; H, 5.21. Found: C, 66.97; H, 5.17%.

4.6. Synthesis of substrates

Methyl 2-(trimethylsilyl)-1-cyclohexenecarboxylate (10) was prepared from cyclohexanone in several steps: see the supporting information of Ref. [6a] (Scheme 5).

4.6.1. N-Methyl N-methoxy

2-(trimethylsilyl)-1-cyclohexenecarboxamide (11) [13]

A solution of methyl 2-(trimethylsilylethynyl)-1-cyclohexenecarboxylate (10) (3.6 g, 15 mmol) in benzene (5 ml) was added to benzene (40 ml) and hexane (45 ml) solution of Me₂AlNMe(OMe) prepared from a hexane solution of Me₃Al (45 ml, 45 mmol) and N,O-dimethylhydroxylamine hydrochloride (4.4 g, 45 mmol). The resulting solution was heated under reflux for 3 h. The reaction mixture was cooled down to r.t., and hydrolyzed by slow and cautious addition of 1.0 N HCl (30 ml). The upper organic layer was separated, and the aqueous layer was extracted with EtOAc (30 ml \times 3). The organic extracts were combined, washed with brine, and dried over $MgSO_4$. The solvent was removed under reduced pressure to give the residual liquid, which was subjected to column chromatography on SiO_2 with hexane-EtOAc (v/v = 4:1) as an eluent to afford N-methyl N-methoxy 2-(trimethylsilyl)-1-cyclohexenecarboxamide (11) (3.6 g, 14 mmol, 92% yield) as a pale yellow liquid. IR (KBr, cm^{-1}): 845, 1659 (C=O), 2144 (C=C). ¹H-NMR (CDCl₃, 300 MHz, 25 °C): $\delta =$ 0.12 (s, 9H), 1.57-1.65 (m, 4H), 2.14-2.27 (m, 4H), 3.23 (s, 3H), 3.71 (s, 3H). ¹³C-NMR (CD₂Cl₂, 100 MHz, -25 °C): $\delta = -0.1$ (SiCH₃), -0.1 (SiCH₃), 21.5 (CH₂), 21.5 (CH₂), 21.8 (CH₂), 21.9 (CH₂), 26.5 (CH₂), 26.7 (CH₂), 28.8 (CH₂), 29.5 (CH₂), 31.8 (NCH₃), 35.7 (NCH₃), 60.3 (OCH₃), 62.0 (OCH₃), 96.4 $(C \equiv), 97.2 \ (C \equiv), 103.0 \ (C \equiv), 104.5 \ (C \equiv), 116.7 \ (C =),$ 119.4 (C =), 140.0 (C =), 143.1 (C =), 166.4 (C = O), 170.8 (C = O) as a mixture of rotamers. Anal. Calc. for C14H23NO2Si: C, 63.35; H, 8.73; N, 5.28. Found: C, 63.07; H, 8.47; N, 5.21%.

4.7. Preparation of β -ethynyl- α , β -unsaturated carbonyl compounds **4**

4.7.1. 2-Ethynyl-1-cyclohexenyl phenyl ketone (4a)

To a solution of 11 (0.47 g, 2.0 mmol) in THF (10

ml) was added preformed phenylmagnesium bromide (4.2 mmol) in THF (15 ml) at 0 °C, and the mixture was stirred at r.t. for 4 h. The reaction mixture was poured into saturated NH₄Cl solution (30 ml), and the aqueous layer was extracted with EtOAc (20 ml \times 3). The combined organic layer was dried over MgSO₄. The solvent was removed under reduced pressure and then 1 N KOH solution (2.0 ml) was added to the residue in MeOH (20 ml) at r.t. After stirring for 0.5 h, this solution was poured into saturated NH₄Cl solution (50 ml). The aqueous layer was extracted with EtOAc (20 ml \times 3) and the combined organic layer was dried over MgSO₄. The solvent was removed under reduced pressure and the residue was subjected to column chromatography on SiO₂ with hexane–EtOAc (v/v = 20:1) as an eluent to afford 4a (0.22 g, 1.0 mmol, 52% yield) as a colorless liquid. IR (neat, cm^{-1}): 648, 690, 709, 732, 916, 1662 (C = O), 2093 (C=C), 3292 (=C-H). ¹H-NMR (CDCl₃, 300 MHz, 25 °C): $\delta = 1.71 - 1.77$ (m, 4H), 2.28-2.38 (m, 4H), 2.81 (s, 1H), 7.40-7.48 (m, 2H) 7.50-7.57 (m, 1H), 7.85-7.92 (m, 2H). ¹³C-NMR $(CDCl_3, 75 \text{ MHz}, 25 \text{ °C}): \delta = 21.4, 21.8, 27.3, 29.8,$ 82.2, 82.3, 119.8, 128.5, 129.5, 133.2, 136.0, 145.8, 199.0 (CO). HRMS (FAB); m/z: 211.1119 ([M + H⁺], calc. for C₁₅H₁₄O: 211.1123).

4.7.2. 2-Ethynyl-1-cyclohexenyl 2-thienyl ketone (4b)

To a solution of thiophene (0.46 ml, 6.0 mmol) in THF (5 ml) was added n-BuLi (4 ml, 1.6 M in hexane, 6.4 mmol) at 0 °C under N_2 , and the mixture was stirred at r.t. for 2 h. This mixture was added to a solution of 10 (0.80 g, 3.0 mmol) in THF (5 ml) at 0 °C, and the mixture was stirred at r.t. for 10 min. The reaction mixture was poured into saturated NH₄Cl solution (20 ml), and the aqueous layer was extracted with EtOAc (10 ml \times 3). The combined organic layer was dried over MgSO4. The solvent was removed under reduced pressure and then K_2CO_3 (1.0 g, 7.5 mmol) was added to the residue in MeOH (30 ml) at r.t. After stirring for 12 h, this solution was poured into saturated NH₄Cl solution (100 ml). The aqueous layer was extracted with EtOAc (30 ml \times 3) and the combined organic layer was dried over MgSO₄. The solvent was removed under reduced pressure and the residue was subjected to column chromatography on SiO₂ with hexane-EtOAc (v/v = 20:1) as an eluent to afford 4b (0.28 g, 1.3 mmol, 43% yield) as a colorless liquid. IR $(neat, cm^{-1}): 643, 734, 774, 856, 1262, 1285, 1411, 1644$ (C=O), 2094 (C≡C), 2935, 3288 (≡C−H). ¹H-NMR (CDCl₃, 300 MHz, 25 °C): $\delta = 1.71 - 1.77$ (m, 4H), 2.28-2.40 (m, 4H), 2.92 (s, 1H), 7.13 (dd, J = 4.2, 4.2Hz, 1H), 7.68 (d, J = 4.2 Hz, 2H). ¹³C-NMR (CDCl₃, 75 MHz, 25 °C): $\delta = 21.4$, 21.7, 27.3, 29.7, 82.0, 82.2, 119.4, 128.1, 134.6, 134.7, 143.0, 145.8, 191.2 (CO). HRMS (FAB); m/z: 217.0685 ([M + H⁺], calc. for C₁₃H₁₂OS: 217.0687).

Acknowledgements

We thank Mr Yasuaki Hisamoto in our department for measuring HRMS spectra. This research was supported on Priority Areas (A) "Exploitation of Multi-Element Cyclic Molecules" from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

- L.S. Hegedus, Transition Metals in the Synthesis of Complex Organic Molecules, University Science Books, Mill Valley, 1994, p. 151.
- [2] M.J. Winter, in: E.W. Abel, F.G.A. Stone, G. Wilkinson (Eds.), Comprehensive Organometallic Chemistry II, vol. 5, Pergamon/ Elsevier, Oxford, 1995, p. 155.
- [3] For a review, see: F.E. McDonald, Chem. Eur. J. 5 (1999) 3103.
- [4] For leading references, see: (a) E.O. Fischer, D. Plabst, Chem. Ber. 107 (1974) 3326;

(b) C.P. Casey, R.L. Anderson, J. Chem. Soc. Chem. Commun. (1975) 895;

(c) A. Parlier, H. Rudler, J. Chem. Soc. Chem. Commun. (1986) 514;

(d) K.H. Dötz, W. Sturm, H.G. Alt, Organometallics 6 (1987) 1424;

(e) F.E. McDonald, C.B. Connolly, M.M. Gleason, T.B. Towne, K.D. Treiber, J. Org. Chem. 58 (1993) 6952;

(f) P. Quayle, S. Rahman, E.L.M. Ward, J. Herbert, Tetrahedron Lett. 35 (1994) 3801;

(g) F.E. McDonald, M.M. Gleason, J. Am. Chem. Soc. 118 (1996) 6648;

- (h) B. Schmidt, P. Kocienski, G. Reid, Tetrahedron 52 (1996) 1617;
- (i) C.F. Bernasconi, Chem. Soc. Rev. 26 (1997) 299;
- (j) F.E. McDonald, H.Y.H. Zhu, J. Am. Chem. Soc. 120 (1998) 4246;
- (k) F.E. McDonald, K.S. Reddy, Y. Díaz, J. Am. Chem. Soc. 122 (2000) 4304;

- [5] For reviews on vinylidene-metal complexes, see: (a) M.I. Bruce, A.G. Swincer, Adv. Organomet. Chem. 22 (1983) 59;
 (b) M.I. Bruce, Chem. Rev. 91 (1991) 197;
 (c) C. Bruneau, P.H. Dixneuf, Acc. Chem. Res. 32 (1999) 311.
- [6] Preparation of pyranylidene-metal complexes via vinylidenemetal intermediates, see: (a) K. Ohe, K. Miki, T. Yokoi, F. Nishino, S. Uemura, Organometallics 19 (2000) 5525;
 (b) N. Iwasawa, M. Shido, K. Maeyama, H. Kusama, J. Am. Chem. Soc. 122 (2000) 10226.
- [7] Transformation of vinylidene-metal intermediates in conjugated systems, see: (a) Y. Wang, M.G. Finn, J. Am. Chem. Soc. 117 (1995) 8045;

(b) K. Ohe, M. Kojima, K. Yonehara, S. Uemura, Angew. Chem. Int. Ed. Engl. 35 (1996) 1823;

- (c) C.A. Merlic, M.E. Pauly, J. Am. Chem. Soc. 118 (1996) 11319;
- (d) T. Manabe, S. Yanagi, K. Ohe, S. Uemura, Organometallics 17 (1998) 2942;

(e) K. Maeyama, N. Iwasawa, J. Am. Chem. Soc. 120 (1998) 1928;

- (f) K. Maeyama, N. Iwasawa, J. Org. Chem. 64 (1999) 1344;
- [8] (a) M. Wrighton, Chem. Rev. 74 (1974) 401;
 (b) F.E. McDonald, C.C. Schultz, J. Am. Chem. Soc. 116 (1994) 9363.
- [9] W. Strohmeier, K. Gerlach, Chem. Ber. 94 (1961) 398.
- [10] A part of this work has been presented at the 79th Annual Meeting of the Chemical Society of Japan in Kobe, March 31, 2001.
- [11] Most recenty, Iwasawa and co-workers have reported the intervention of a similar carbene complex in the tungsten-catalyzed cyclization of 2-ethynylphenyl alkyl ketones. N. Iwasawa, M. Shido, H. Kusama, J. Am. Chem. Soc. 123 (2001) 5814.
- [12] Chromium moieties are readily displaced with the oxygen atom by molecular oxygen, see: (a) R.B. Silveman, R.A. Olofson, Chem. Commun. (1968) 1313;
 (b) E.O. Fischer, S. Riedmüller, Chem. Ber. 107 (1974) 915.
- [13] For preparation of ketones, see: (a) M.F. Lipton, A. Baska, S.M. Weinreb, Org. Synth. 59 (1979) 49;
 (b) J.I. Levin, E. Turos, S.M. Weinreb, Synth. Commun. 12 (1982) 989;
 (c) S. Nahm, S.M. Weinreb, Tetrahedron Lett. 22 (1981) 3815.